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Abstract—We address and aim to solve the control problem
of an inverted pendulum mounted on top of a quadrotor. This
classical control problem is nonlinear due to the dynamical
nature of the quadrotor coupled with the nonlinear pendulum
dynamics model. We have used Model Predictive Control (MPC)
to eliminate the error between the current trajectory and the
desired trajectory generated by Direct Collocation. The system is
subjected to multiple objects in the environment, and one main
objective is to avoid obstacles with these objects by finding a
collision-free path using RRT*.

Index Terms—MPC, quadrotor, inverted pendulum, direct
collocation, RRT%*.

Github Repository

I. INTRODUCTION

Development of flight control strategies has become a focus
for many researchers in the last decade due to the increasing
functionality and usage areas of quadrotors including search
and rescue operations, crop monitoring, and surveillance of
dangerous areas. Augmenting an inverted pendulum system to
a quadrotor becomes more interesting as this can be further
extended to other applications such as balancing payloads on
drones or bipedal robots.

In this paper, we develop a control strategy to maintain the
pendulum’s vertical position on top of the quadrotor while
hovering and when the quadrotor is following a pre-defined
nonlinear curved trajectory. The solution to this control prob-
lem suggests that this strategy could be applied to accomplish
other tasks.

This control problem involves a nonlinear unstable system
because the nonlinear dynamics of the quadrotor coupled with
the pendulum dynamics by nature increases the complexity of
the problem.

Although earlier work presented quadrotor control strategies
for hovering and curved trajectory [1]], the environment where
the quadrotor was operating was assumed to be obstacle-
free. In our case, we have tested our control strategy in
an environment where obstacles exist and the quadrotor au-
tonomously chooses an optimal path that avoids collision with
these obstacles.

In Section II, we briefly explain the visualization of the
quad-rotor and the simulation of the dynamics. Section III
demonstrates the use of Direct Collocation to generate a
reference trajectory to allow for smooth quadrotor movement
and explains how MPC is used to track and eliminate any
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difference between a measured trajectory and the reference
trajectory. We also briefly explain some additional work we
did along the directions of implementing CLF-QP for the
quadrotor, and LQR for the inverted pendulum to control a
decoupled system. Section IV will present how we utilized
the RRT* algorithm [4] to avoid obstacles placed in the
environment. In Section V, we discuss the results of our
experiments. Section VI talks about different future directions
that we can take to continue and enhance the project. In
Section VII, we conclude and provide a summary of our study.

II. DYNAMICS & VISUALIZATION

A. IPQ (Inverted Pendulum and Quad-rotor) Visualization

The visualization of the combined quadrotor and inverted
pendulum system is accomplished using Drake’s Multibody-
Plant class. The pendulum is welded 0.03 m above the frame
of the quadrotor. At each time step, we calculate the position
and orientation of the quadrotor as well as the pendulum. We
make the assumption that there is no rotation about the z-axis
of the inverted pendulum.

B. Simulation Dynamics

The combined dynamics of the quadrotor and pendulum
are modeled to be similar to what is described in [3]. The
simulated model can accept as input the body-z force and the
three axis moments, or the torque generated by each propeller.
They are related by the following equation :
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In the above equation, Ky and K, are the force and
moment constants. [ is the distance between the propeller and
the center of the base.

The dynamics of the system are used to simulate how the
movement of the quadrotor will affect the relative position of
the inverted pendulum at every timestep. Figure [I] illustrates
the system’s response to nominal torque inputs and highlights
the effect of a slight deviation in the pendulum’s initial
position.


https://github.com/Meow404/Inverted-Pendulum-Quadrotor
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Fig. 1: Simulated quadrotor with inverted pendulum using
nominal torque inputs to maintain hovering position and a
slight deviation in pendulum start position
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Fig. 2: 3D offset of the pendulum COM in reference to the
quadrotor. Image taken from [3]]

III. CONTROL

To achieve control, we leverage an MPC framework that
works in conjunction with a pre-planned reference trajectory
obtained by Direct Collocation. The reference solution,
generated offline, provides a dynamically feasible state and
input sequence for the system.

We first define the state vector of the combined Inverted
Pendulum and Quadrotor system. The quadrotor state consists
of the position of the quadrotor p = [p,, py, p.]7, the linear
velocity of the quadrotor v = [v, vy, v,]T, the Euler angles
q = [¢,0,¢]7 and the angular velocity w = [w,,w,,w,]”.
The pendulum state is tracked by two variables a and b. The
3D offset of the pendulum COM with respect to the base
attached to the quadrotor is given by [a,b,(] and they are
related by the equation
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where L is the distance of the COM on the pendulum from
the base.
Finally we define the state x as follows :

T = [p q a b v w a b
A. MPC

During online execution, the MPC controller continuously
solves a finite-horizon optimal control problem at each discrete

time step, with the initial condition being the current measured
state. The controller’s cost function penalizes deviations be-
tween the current state and the desired state of the system
while also regularizing the control input to avoid actuator
saturation. The cost function is given as:
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Here, A and B refer to the discretized dynamics of the non-
linear system at (x4, uq) at every timestep. This is calculated
using Sympy to find the Jacobians of A and B.
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These calculations can be found in the github link attached to
this paper if required.

The variables x, u track the error of the current state, input to
the required state and input.
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We tune the value of @, Q¢, N and ¢t where N is the number of
receding horizon steps and ¢ refers to discrete time sampling
period. We prioritize position of the quadrotor and relative
position and velocities of the pendulum by specifying the
following Q matrix.

Q = diag(100, 100, 40, 20, 20, 20, 40,40, 1,1,1,1,1, 1,100, 100)

(a) Non equilibrium (b) Position of the (c) Position of the
start position quadrotor over time pendulum over time
Fig. 3: Tracking position of quadrotor and pendulum over
time while attaining a position (0, 0, 0.3) and stabilizing the

pendulum

As seen in figure [3| when the target state (x4, uq) was set
to a fixed value, the controller initially required a significant



amount of time to converge to the desired state. After tuning,
the controller employed a long prediction horizon (N=20,
t=0.1) to effectively plan how to utilize the pendulum dynam-
ics to guide the quadrotor toward the target state. The system
gradually inched toward the goal position while ensuring the
pendulum maintained an upright orientation throughout the
process.

B. Direction Collocation

To better use the dynamics of the system to achieve a
target state, we use direct collocation to plan the states and
corresponding inputs required for a dynamically feasible path
between a start and an endpoint. The objective is to enable
the optimizer to determine intermediate states that leverage
the system’s dynamics to reach the desired target state. For
example, the pendulum can be slightly tipped forward to
initiate movement toward the target configuration, while also
ensuring that it can stabilize in an upright position upon
reaching the target.

We define the optimization problem as follows :
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In the optimization framework described above, equations
(7) and (8) define the initial state (x;) and the final target state
(zs) of the system. Equation (9) enforces that the final torque
input corresponds to a hovering configuration. Constraint (10)
ensures that the dynamics computed at each knot point are
consistent with those predicted by the spline formed between
z and xy4;. Finally, equation (11) imposes torque limits,
ensuring the inputs remain within the allowable range for each
propeller.

To initialize the optimization, the hovering torque is used
as the initial guess for the control input u at each time step.
For the system states, we uniformly sample between the start
and final configurations as an initial guess.

The number of knot points required generally depends on
the distance between the initial and final configurations. There
exists a trade-off: increasing the number of knot points im-
proves the optimizer’s ability to generate a reliable trajectory
that the controller can track but at the cost of increased
computation time.

Once we determine the knot points from the optimizer,
we create a target state trajectory x4(t) and target input
trajectory uq(t). These target trajectories are then fed
to the MPC controller for trajectory tracking rather than
goal tracking. Thus the combined system will try to use
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Fig. 4: Direct collection feed a target state and input trajectory
for MPC trajectory tracking

the system dynamics to move towards the target configuration.
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Fig. 5: Using MPC to track desired position of quadrotor and
pendulum generated thorugh direct collocation over time while
attaining a position (0, 0, 0.3) and stabilizing the pendulum

The results shown in Figure [5] are promising. Significant
time was spent tuning parameters such as the number of knot
points, the weighting matrices for the MPC cost function (@)
and R). The quadrotor is able to attain the target positions in
relatively shorter interval while maintaining the pendulum in
an upright position.

C. Additional Work: CLF-QP + LOR
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Fig. 6: CLF-QP + LQR

In [3]], the paper talks about decoupling the system into
control for the quadotor and control of the inverted pendulum.
Two methods were discussed for the control of the quadrotor,
namely feedback linearization and CLF-QP. Similarly, two
methods were discussed for the control of the inverted pendu-
lum, feedback linearization and LQR. Inspired, we set out to
implement the system described in figure [6]

We were ultimately unable to replicate the results from the
paper. The behavior we observed was akin to the controller
not providing enough torque to compensate for the tilt in the
pendulum. Further work was not continued in this direction
such as implementing control with feedback linearization or
tuning the LQR and QP weighting matrices Q and R.



Fig. 7: Quadrotor starting with a slight tilt unable to compen-
sate for deviations in pendulum

Xijs Xdk
RRT*

Direct Xa(t), Ug(t)

Collocation > MEC
Ud

Geometric
Poses

u

Drake
Visualization

Dynamics

> ! J
Simulation |~

Fig. 8: Overall controller pipeline

IV. TRAJECTORY PLANNING

In addition to balancing the inverted pendulum, we aimed
to design a system capable of moving from a start point to
a goal point while avoiding obstacles. For this purpose, we
implemented the RRT* algorithm as a global planner.

The RRT* algorithm was applied to a specific point on the
quadrotor-pendulum system, corresponding to the mounting
point of the pendulum on the quadrotor. However, since the
pendulum can swing in any direction during motion, there is
a risk that it could collide with obstacles even if the planned
path for the mounting point avoids them. To account for this,
we added a safety margin by padding the obstacles with
a bounding box of 1.3 meters in the upward vertical and
horizontal sides. This margin was determined based on the
maximum distance between the tip of the pendulum and the
closest point on the quadrotor when the pendulum is fully
horizontal.

V. RESULTS

By making the assumption that the quadrotor and inverted
pendulum system tries to maintain its equilibrium point, we
fed the intermediate points from the RRT* planner to direct
collocation.

The results as we see in figure [9] were promising. The
controller was successful in ensuring that the quadrotor system
was able to balance the inverted pendulum while following
the trajectory and avoid obstacles when doing so. However
in order to track the trajectory well, a long prediction horizon
was needed for MPC (N=20, t=0.1) which may not be feasible
for real-time control.

(c) Relative position of pendulum

Fig. 9: 3D Quadrotor with inverted pendulum attempting
obstacle avoidance

VI. FUTURE WORKS

Some possible avenues for future work include :

o Using non-linear MPC as opposed to discretized MPC.
In addition, using specialized real-time MPC solvers to
improve performance.

« Have a feedback loop between collocation and RRT to
check if the path generated by collocation is indeed
collision free.

o Further investigation on CLF-QP, to understand where it
lacks and how we can improve on it to get better results.

VII. CONCLUSION

In this report, we presented a control strategy for an
inverted pendulum mounted on a quadrotor operating in a 3D
environment with obstacles and path planning. The proposed
approach utilizes a pre-planned reference trajectory, generated
using Direct Collocation, to ensure smooth system motion
and minimize undesired oscillations. The RRT* algorithm was
employed to identify collision-free paths by exploring all fea-
sible routes around obstacles. Model Predictive Control (MPC)
was then used to reduce deviations between the measured and
reference states of the system.

We validated our approach through simulations in the Drake
environment, where the quadrotor was able to successfully
balance the inverted pendulum from the starting point to the
goal point while avoiding obstacles by generating potential
collision-free paths. However, solving MPC with a long pre-
diction horizon may not suitable for real-time systems.

Further improvements, including faster real-time MPC tra-
jectory tracking and dynamically feasible collision avoidance,
can fully guarantee safe and reliable operation of the flying
inverted pendulum system.
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