Project Report: An Autonomous VIO-based Quadcopter

Thomas Stephen Felix

. g Point-to-Point
Short-cutting Memuu]—b[Trajectory Planner J—{Trajeclory Execullun]

(a) Project 1.3

[A* Planner]—»[Shcm-cumng Method

Trajectory Execution

QP
I Trajectory Planner I
Collision Check

(b) Project 3

Fig. 1: (a) and (b) represent the trajectory generation workflow
for Project 1.3 and Project 3 respectively.

I. TRAJECTORY TRACKING WITH STATE ESTIMATOR
A. Overview

This project aims to achieve autonomous quadcopter flight
by integrating state estimation, specifically using Visual Inertial
Odometry (VIO), with trajectory planning and control modules
developed in previous course stages. The core challenge lies in
adapting the planning and control algorithms to rely solely on
the robot’s VIO-derived state estimate, rather than ground-truth
data. All development and testing occur within the flightsim
simulation environment, which provides simulated VIO sensor
input through pre-calculated feature projections, enabling closed-
loop autonomous navigation based on onboard sensing.

B. An breakdown of Project 1.3

To provide context for the system improvements implemented
in Project 3, this section outlines the baseline trajectory plan-
ning system, conceptually illustrated in Figure la. The system
incorporates the following key components:

1) A* Planner: The A* search algorithm is employed to

generate a feasible path from a designated start location to
a goal location. Path generation is guided by the following
cost functions:

g(v) = Number of steps from the start location

h(v) = Euclidean distance to the goal location
f(v) = g(v) + h(v)

The environment is represented by a map discretized with a
uniform resolution of 0.25 m per dimension. This resolution
was selected such that the quadrotor is fully encompassed
within a grid cell when positioned at its center. A safety
margin of 0.25 m is maintained to ensure adequate clearance
from obstacles.

2) Path Short-cutting: This post-processing step refines the
initial A* path. It identifies pairs of waypoints on the trajec-
tory that can be connected by a collision-free straight line,
subsequently removing any intermediate waypoints between
them. This process reduces the trajectory representation to
a sequence of essential waypoints, as depicted in Figure 2.

Fig. 2: Tllustration of the short-cutting algorithm selecting essen-
tial waypoints from an A* generated trajectory.

3) Point-to-Point Trajectory Planner: As implemented in
Project 1.3, this component generates smooth trajectories
between consecutive essential waypoints obtained from the
short-cutting process. It operates under the assumption that
the quadrotor starts from rest and comes to rest at the
end of each segment. The trajectory for each individual
segment is computed by solving a least-squares optimization
problem formulated with endpoint constraints for position,
zero velocity and zero acceleration in the form

Ax=b
C. Improvements
—— , —T—
T . -
@ (b
(©) (d)

Fig. 3: (a) refers to the path generated after reducing the reso-
lution. (c) is a plot of the kinematics vs time of the trajectory
followed. (b) and (d) show the 3D path and kinematics of the
path generated

1) Reduced Resolution: Initial investigations revealed that
the map resolution employed previously (as discussed in the
context of Figure 2) was insufficient to identify narrow passages
potentially navigable by the quadrotor. Consequently, the map
resolution was refined to 0.2 m per dimension. This finer dis-
cretization enabled the planner to discover shorter, feasible paths
through confined spaces, as illustrated in Figure 3a.

2) Trajectory Planning as a Quadratic Program (QP): The
point-to-point trajectory planner, while functional, exhibited lim-
itations related to dynamic feasibility, evident in analyses such
as Figure 3c. The requirement for the quadrotor to achieve zero
velocity and acceleration at each intermediate waypoint resulted
in discontinuous velocity/acceleration profiles and inefficient
flight, characterized by excessive time spent on acceleration and
deceleration cycles.

To address these shortcomings, the trajectory generation prob-
lem was reformulated as a Quadratic Program (QP). This ap-
proach aims to find a dynamically smoother path by optimizing
the entire trajectory simultaneously. The specific formulation
involved the following objectives and constraints (detailed equa-
tions are provided in the Appendix):

a) Trajectory endpoints must coincide with the designated

waypoints.
b) Ensure continuity of velocity and acceleration profiles across
segment junctions.

¢) Minimize the integral of squared jerk along the entire

trajectory.

However, optimizing solely based on these criteria frequently
produced trajectories that violated environmental constraints,
leading to collisions (illustrated in Figure 3b). To mitigate colli-
sions while retaining the benefits of the QP formulation, several
strategies were implemented:

« Waypoint Insertion: Intermediate waypoints were strategi-
cally inserted between consecutive waypoints derived from
the path short-cutting phase. This aimed to constrain the op-
timized trajectory closer to the initial, geometrically feasible
path.

o QP Inequality Constraints: The QP formulation was aug-
mented with inequality constraints to enforce dynamic limits
and safety. These included: (a) maximum velocity limits,
(b) maximum acceleration limits, (c) constraints penalizing
deviation from the initial shortcut path segments, and (d)
constraints enforcing a minimum distance from detected
obstacles near the trajectory.

o Sharp Turn Handling: The angle between successive tra-
jectory segments was monitored. If a turn exceeded a pre-
defined threshold (e.g., 45 degrees), the time allocation for
the relevant segments could be adjusted, implicitly allowing
the optimizer to find a lower-acceleration maneuver.

While combinations of these methods yielded improvements in
specific scenarios, they often lacked robustness and computational
efficiency, particularly when higher quadrotor speeds were re-
quired.

3) Iterative Collision Check and QP Refinement: Further ex-
perimentation led to a more robust two-phase approach, detailed
in Algorithm 1. This method integrates trajectory optimization
with iterative collision checking and refinement.

The process begins with the waypoints generated by the short-
cutting algorithm. First, an initial minimum-jerk trajectory con-
necting these points is computed via the QP formulation. Second,

Map Maze OverUnder Window Slalom Stairwell — Switchback
P13 Time (s) 12.01 16.35 13.1 275 19.14 36.42
IQP Time (s) 5.39 13.57 7.36 16.24 14.31 23.31

TABLE I: The table shows the performance of the iterative QP
(IQP) algorithm vs Project 1.3 (P13) as measured in Gradescope

this trajectory is densely sampled and checked for collisions
against the occupancy map. If the trajectory is collision-free, it is
accepted. However, if a collision is detected within a particular
segment, a new waypoint is inserted at the midpoint of that
colliding segment. The QP optimization is then re-solved with
this updated set of waypoints. This generate-check-refine cycle
repeats until a fully collision-free trajectory is obtained or a
maximum iteration limit is reached.

Algorithm 1 Iterative Spline Refinement with Collision Checking

1: procedure MAKESPLINES(initialPoints)

2 points < initial Points

3 for i < 1 to 10 do

4 trajectory < GETQPTRAJECTORY (points)
5: for all segment in trajectory do

6 if COLLISIONDETECTED(segment) then
7 Add midPoint to points

8
9

end if
end for
10: if no trajectory collisions detected then
11: return trajectory
12: end if
13: end for
14: return trajectory

15: end procedure

D. Results

(a) (©)

Fig. 4: (a) path generated by A* and the final way points used to
generate the trajectory. (b) path followed by quadrotor. (c) smooth
kinematics of the quadrotor when following the path

(b)

The performance of the iterative planning method proved
highly effective, as illustrated in Figure 4. The planner consis-
tently generated feasible, collision-free trajectories, even at sig-
nificant operational speeds. This robust planning capability was
a key factor in achieving a final score of 97.52 on Gradescope.
The performance improvement as compared to Project 1.3 can
be analyzed in table I.

E. Discussion

Further effort was also directed towards tuning the PID con-
trol parameters. Throughout the project’s duration, the existing

state estimation pipeline functioned effectively, necessitating no
additional modifications to that system component.

II. LoCAL TRAJECTORY RE-PLANNING
A. Implementation

The local trajectory planner included the following modifica-
tions :

« Modified A* Goal Condition: To handle scenarios where
the precise goal coordinates might be inside an obstacle or
otherwise inaccessible, the A* search termination condition
was relaxed. Instead of requiring the path to reach the exact
goal, the search concludes successfully upon finding a valid,
accessible node within a specified tolerance radius (e.g.,
0.25m) of the target goal.

o QP Trajectory Planner: A Quadratic Programming (QP)
solver, as previously described in Section I-C.2, was em-
ployed to generate smooth trajectories between the way-
points identified by A*. This QP planner incorporated the
following enhancements:

— Generation of intermediate waypoints for trajectory seg-
ments exceeding a certain length, ensuring better path
control.

— Inclusion of an inequality constraint to restrict the maxi-
mum velocity along the trajectory (e.g., to 3m/s).

— Adaptive time allocation for segments involving sharp
turns (determined by angle thresholds), allowing the
quadrotor more time to execute demanding maneuvers
smoothly.

« Spline Timing Representation: Each trajectory segment
is represented by an instance of a dedicated Spline class.
This object stores all relevant information for the segment,
including its polynomial coefficients, duration, and its start
and end times referenced to a global clock. While internal
calculations might use a relative time frame (starting from
zero for each segment), this is consistently mapped to
absolute time for overall trajectory execution and synchro-
nization.

The world_traj.py module incorporates a reactive replanning
mechanism to handle potential collisions detected along the
current trajectory. Within the replan method, the currently
planned trajectory is periodically checked for future collisions
using the local occupancy map. If an impending collision is
detected within a defined horizon, the system triggers a trajec-
tory regeneration sequence. This process involves capturing the
quadrotor’s current state as the new starting point, defining a
new local target goal, and re-invoking the full trajectory planning
pipeline (plan_traj) including graph search, path shortcutting,
and QP-based spline optimization to generate a new, feasible
trajectory originating from the current state.

B. Performance

The system exhibited the following key performance limita-
tions:

o The planning system failed to identify available narrow
corridors, thus preventing the quadrotor from utilizing po-
tentially shorter or more efficient paths to the goal location.

« Trajectory execution involved significant acceleration phases
at the beginning of segments and deceleration phases at
the end (or at each waypoint), leading to discontinuous

v

@

|
| | i | |

A \«.1 i A g ot Vs o

(b)

Fig. 5: (a) path followed by quadrotor. (b) accelerometer readings
when executing the trajectory

velocity/acceleration profiles and reducing overall flight ef-
ficiency.

« These frequent and potentially large changes in accelera-
tion adversely affected the accuracy of the state estimation
pipeline, a problem anticipated to be exacerbated at higher
flight speeds.

Vanilla simulator comparison : The generated trajectories were
observed to be sub-optimal, resulting in completion times signif-
icantly longer than potentially achievable with a more optimized
approach. Furthermore, accurate tracking of these trajectories
proved increasingly challenging, particularly at higher operational
velocities.

C. Failure Cases

| —

Fig. 6: Local planning for window map

Figure 6 illustrates a potential failure mode where performance
degrades over longer trajectories. This may occur due to the
accumulation of state estimation error over time, potentially
exacerbated by non-smooth characteristics (e.g., high jerk) in the
planned path, leading to deviations from the intended trajectory.

Furthermore, Figure 7 highlights challenges associated with
high-speed operation. The depicted scenario suggests that at
increased velocities, the system exhibits difficulty in reacting
sufficiently quickly or accurately to ensure effective obstacle
avoidance.

Fig. 7: Local planning for over under at high velocity

D. Discussion

Further investigation and development could enhance the local
trajectory replanning capabilities. Potential extensions include:

1) Addressing discontinuities (e.g., in velocity or acceleration)
observed in the generated trajectory segments, particularly
during replanning events, to ensure smoother execution.

2) Implementing or further refining the iterative Quadratic
Programming (QP) trajectory generation method, aiming to
produce trajectories that enhance both safety margins and
overall speed.

3) Investigating the underlying reasons why the current
pathfinding or planning approach fails to utilize narrow
corridors, potentially examining aspects like map resolution,
cost function design, or search heuristics.

E. Conclusion

This project successfully integrated VIO-based state estimation
with trajectory planning and control modules, achieving the goal
of autonomous quadcopter flight predicated on onboard sensor
feedback rather than ground truth. An iterative approach com-
bining Quadratic Programming (QP) for smooth, minimum-jerk
trajectory generation with collision checking and trajectory regen-
eration proved particularly effective. This methodology facilitated
dynamically feasible flight, enabled successful navigation even
at relatively high speeds within the simulated environment, and
resulted in strong quantitative performance. While demonstrating
significant success for a global planner, opportunities for future
enhancement were identified when using a local planner, includ-
ing improving trajectory time-optimality and ensuring reliable
utilization of narrow environmental corridors.

APPENDIX

QP Formulation

o = Wi (1)
o8 + ot + e + o1 2
+C T+ VT = Wi 3)
c®) 4ot 4 3¢(F) 72)
+aePr? 4 sePrt = oF Y 5)
20?4+ 6T (6)
+120072 4 20cP 7% = 20FTY ()
®)
72075 3607 12073] [CP
Minimize | ¥ cM| |3607t 1921% 7212 | |
1207% 727% 36T | |k
3
€))

k refers to segment between two waypoints. W is the start
position and Wy, ; is the end position. Ci(k) are the coefficients
corresponding to the kth segment.

