1

MEAM 5200 - Final Project Report

Emily Paul, Harita Trivedi, Thomas Stephen Felix, Vaikhari Kharul
January 24, 2026

Methods

1.1 Static Blocks

Algorithm 1 Pick Up Static Block

1:

N O

11:
12:
13:
14:
15:

16:
17:

oUW N

Procedure PICKUPSTATICBLOCK()

. cubes < GETCUBESONSTATICBLOCK() Find cubes on static block
. if LEN(cubes) = 0 then

return False

: end if

: cube <+ cubes.POP() Find robot pose to pickup a cube
: cube_position <+ cube[l : 3, 4]

: planar_angle + GETPLANARANGLE(cube)

. pickup_pose + MAKEPICKUPROBOTPOSE(planar_angle, cube_position)
10:

hovering_pose < MAKEHOVERINGROBOTPOSE(pickup_pose)

MoVETOFRAME(hovering_pose) Execute movement
OPENGRIPPER()

MoVETOFRAME(pickup_pose)

CLOSEGRIPPER()

MOVETODEFAULTSTATICCONFIGURATION()

return True
End Procedure

Algorithm 1 outlines the overall procedure on how a cube was identified and picked up on the static

block. Lines 2-5 use object detection to find the cubes in the robot frame and ensure that there are
sufficient cubes for the robot to interact with. Lines 6-10 find the relevant robot transforms required
to pickup the cube and lines 11-15 execute the movement necessary to physically interact with the
cube. We will inspect some components further :

e GETCUBESONSTATICBLOCK

Algorithm 2 Get Cubes On State Block

1:

Procedure GETCUBESONSTATICBLOCK()

MOVETODEFAULTSTATICCONFIGURATION()
cubes + GETCUBESINROBOTFRAME() Find positions of cubes in robot frame
cubes < FILTERCUBESONSTATICBLOCK (cubes)

return cubes
End Procedure

The function MOVETODEFAULTSTATICCONFIGURATION moves the robot to pre-defined joint
configurations. These configurations are found when testing with the real robot that has the

entire static platform within the FOV of the camera.

(a) red robot (b) blue robot

Figure 1: Default static joint configuration

Algorithm 3 Get Cubes In Robot Frame

1:

=

Procedure GETCUBESINROBOTFRAME()

cubes_in_camera_frame <— GETDETECTIONS() Get cube detections from camera
cubes_in_robot_frame = EMPTY
for HSYMee € cubes_in_camera_frame do

cube
cubes_in_robot_frame. APPEND(HI% « HES, . x HEumera)
end for

return cubes_in_robot_frame
End Procedure

GETCUBESINROBOTFRAME is described in algorithm 3. line 2 interacts with the physical or
simulated camera to get the transforms of cubes detected by the camera. The cubes locations
averaged over 10 detections before being returned. In lines 4-6, we calculate the position of each
cube in the robot frame as

robot __ robot ee camera
chbe - Hee * Hcamera * I oybe

Finally FILTERCUBESONSTATICBLOCK uses certain boundry conditions for the static block (refer
to 1) to filter out cubes not on top of the static platform. These are calculated from the dimensions
provided of the environment.

Tmin Tmazx Ymin Ymax Zmin Amazx

blue 0.437 0.687 0.044 0.294 0.2 0.3
red 0437 0.687 -0.294 -0.044 0.2 0.3

Table 1: Boundry box for cubes on static platform

GETPLANARANGLE

For a cube on the static platform, there will always be an axis pointing along the +ve z-direction
of the robot frame. This can be identified from the 3rd row of the homogenous matrix. As an
example

a 0 —-b =z

b 0 a
robot __)
A =10 1 0 -

00 0 1

Here the +ve y-axis of the cube is alighned with the z-axis of the robot frame. We use this
information to calculate the angle the x-z plane of the cube makes with the x-y plan of the robot

as
o = tan"'(a/b)

We then limit this to [—m/4, 7 /4] which is the minimum angle required to pick up a cube in any
orientation.

e MAKEPICKUPROBOTPOSE and MAKEHOVERINGROBOTPOSE
This methods create the hovering position and the pickup position. The hovering position,
calculated in the robot frame is 0.025m (half the lenghth of the cube) above the pickup position.
It ensures the robot will avoid collisions when attempting to pick up the cube by performing
only a lateral movement in the z-direction.
Let P.,pe be the position of the cube in the world frame. In the transformation matrix calculate
previously, this would refer to the first three rows of its last column.

Rcube = Ruertical,gripper * RZ,a

Reyupe is the desired rotation of the end-effector in order to precisely pickup the cube.

1 0 0
Rvertical,gripper =0 -1 0
0 0 -1

Ryertical_gripper is the rotation of the endeffector, such that the gripper is facing downwards to
pick up the cube (The z-axis of the gipper is aligned with the -ve z-axis of the robot frame).

cos(a) —sin(a) 0
Rz = |sin(o) cos(a) O
0 0 1

Rz . is the rotation about the z-axis by planar angle a. We can now compose the hovering and
pickup transforms in robot frame :

Rcube Pcube
Hpick:up = |: 0 1 :|

For the hover position, the hover offset is added to H|[3,4] which refers to the position of the
endeffector along the z-direction of the robot frame.

e MoOVETOFRAME

Algorithm 4 Move To Frame

1:

o

Procedure MOVETOFRAME(frame, robot_speed, configuration_bias)

status, robot_position <— IKPOSITIONNULL(frame, con figuration_bias)
if status = False then
return False
end if
SETROBOTSPEED(robot_speed)
MOoVETOPOSITION(robot _poisition)

return True
End Procedure

In algorithm 4, line 2 converts the target robot pose to be attained into joint configurations for
the robot using Inverse Kinematics (IK). Line 6 & 7 will set the robot speed and move to the
desired configuration.

To calculate the joint configuration, the IK solver uses a gradient descent method to solve the
IK problem of the panda robot. We use ’J pseudo-inverse’ as opposed to ’J transpose’ as exper-
imentation proved its better reliability. We use the current joint configuration of the robot as

the seed (starting configuration) for the gradient descent solver. Finally, we add a vector in the
nullspace to maintain a configuration bias. If no bias is given, the current configuration is used
as the bias. This assumes that the solution required is close to the current configuration of the
robot and helps to avoid wide, unnecessary and potentially dangerous movements.

b = (configuration_bias — q)/(upper — lower)
dg = dg;, + (I — JT)b

1.2 Dynamic Blocks

Our strategy for dynamic blocks was to wait until a block enters a detection bracket, then predict
forward its future pose for a given time horizon so that the arm can wait there at the appropriate
position and orientation until the time elapses, at which point the block will be directly below the
gripper. We then lower and close the gripper to capture the block.

Our detection bracket is a range of angles on the table, calling the positive x axis 0 and the positive
y axis 5, for reference.

Algorithm 5 Detect Block at Detection Angle

1:
2:

3:
4:
. end if

10:
11:

12:
13:

Procedure BLOCKATDETECTIONANGLE(cube_trans forms, 3)
buffer < % Detection range buffer around the angle

if ISEMPTY(cube_transforms) then
return False

. for cube € cube_transforms do

0 < CALCULATEANGLE(cube) Calculate cube’s angle relative to the table center

if B —buffer <0 <pB+buffer then
return cube Return the cube if it is within detection range
end if
end for

return None No cube found within detection range
End Procedure

In algorithm 5, we check if there’s a block in our detection bracket, consisting of our detection

target angle 8 plus or minus a buffer, on the table.

e CALCULATEANGLE
We extract the and y values from the input block pose and compute the angle on the table as
0 = arctan ¥.
xr

Algorithm 6 Predict Time to Catch Angle

1:

Procedure PREDICTTIMETOCATCHANGLE(block pose,)

F W g Rotational speed of the table
¢ Oeurr < CALCULATEANGLE(block _pose) Current block angle
¢ tprediction < % Calculate time to reach catch angle
: return tprediction Predicted time horizon

: End Procedure

In algorithm 6, we predict how long it will take the input block to move from its current angle on

the table to the catch angle 7.

In algorithm 7, we first set the angular velocity of the rotating table, and then we compute the

angle on the table at which the block is currently located. We then use the table’s angular velocity
to compute what this angle would be at the horizon that we’re predicting for (where the arm will be

Algorithm 7 Predict Block Position and Angle at Horizon

1:

Procedure PREDICTBLOCKPOSITIONANGLEATHORIZON (block _pose, prediction_time)

2w & Rotational speed of the table
3: Ocurr < CALCULATEANGLE(block _pose)

4 Oruiure < Ocurr + w - prediction_time Predict future angle of rotation
5: radius < CALCULATERADIUS(block _pose)

6: POSfuture < CALCULATEPOSITION(radius, 8 fyture, block_pose) Predict future block position
7: 70t fyture < UPDATEROTATIONMATRIX(w, prediction_time, block_pose)

8: Qfyture < GETPLANARANGLE(r0t fyture) Compute planar angle
9: ee_rot fyture < CALCULATEENDEFFECTORROTATION(O fyture, Ruertical_gripper)

10: future_pose <— ASSEMBLEPOSE(ee_rot fyiure, DOS future) Build pose matrix
11: return future_pose, 0 tyiure

12:

End Procedure

waiting in a hover). We compute how far the the block is from the center of the table an use this
effective radius, along with the predicted future angle, to compute the future position of the block. We
then update the block’s rotation matrix accordingly and extract its future planar angle to assemble
and return the complete future pose.

e CALCULATERADIUS

We compute the distance of the block from the center of the table using the Pythagorean theorem,
as r = \/x? +y2.

o CALCULATEPOSITION

We compute the future positional values as follows:
T future = radius - cos 0 rytyre

Yfuture = radius - sin ofuture

Zfuture = %

e UPDATEROTATIONMATRIX

We use scipy’s Rotation library to construct a rotation matrix 7' corresponding to a rotation
of w - prediction_time about the z axis. We then extract the rotation matrix R from block_pose
(the first three rows and columns) and compute the block’s future rotation as T - R.

e GETPLANARANGLE

Explained in section 1.1.

e CALCULATEENDEFFECTORROTATION

We use the Rotation library to construct a rotation matrix 7' corresponding to a rotation of
Qfyture + Ooffser around the z axis, where aofyrser is a hardware-specific adjustment that we
gathered from tuning on the arms. We also pull the gripper’s vertical rotation V', and compute
the end effector’s future rotation as V- T'.

e ASSEMBLEPOSE

We fill in the future pose’s first three rows and columns with ee_rot fytyr. and the last column
with pos fyture-

Algorithm 8 Pick Up Dynamic Block

1:

Procedure PICKUPDYNAMICBLOCK()

2: 8 < SETANGLE(detection)
3: v <= SETANGLE(catch)

4: MOVEWITHSPEED(DEFAULTDYNAMICPOSITION) Move to default dynamic block position
5: start_time <— CURRENTTIME()

10:
11:

12:
13:

14:
15:
16:
17:

18:
19:
20:

21:
22:

23:
24:
25:
26:
27:
28:

29:

30:

31:
32:

while True do
cubes + GETCUBEINTABLEFRAME() Retrieve cube positions on table
detection_time < CURRENTTIME()

if NOTEMPTY(cubes) then
cube_tracked <+ BLOCKATDETECTIONANGLE(cubes, 3) Check detection bracket
if cube_tracked # None then
Break
end if
end if

if CURRENTTIME() — start_time > 120 then
End Procedure Exit if table fully rotated and no cubes were found
end if
end while

teateh < PREDICTTIMETOCATCHANGLE(cube_tracked,) Predict time to pickup
[pos Futures _] + PREDICTBLOCKPOSITIONANGLEATHORIZON (cube_tracked, teaten)
[POShover, POScaten) < GETHOVERCATCHP OSITIONS(pOS fyture) Get configurations for pickup

bias <~ SETCONFIGURATIONBIAS()
MOVETOFRAME(poshover, 0.2, bias) Move to hover over pickup location

timeo et < SETTIMEOFFSET()
OPENGRIPPER()
while True do
if CURRENTTIME() — detection_time > tcqrcn — timeorfser then

[status, -] + MOVETOFRAME(poScatch, 0.3, bias)
CLOSEGRIPPER() Lower and close gripper at pickup time
Break
end if
end while
MOVETOPOSITION(pOShovering) Return to hovering position

End Procedure

Algorithm 8 is the function called in a loop in main once we finish stacking the static blocks, to

keep stacking dynamic blocks until the rotating table is empty. When it is called, it first runs our
block detection (algorithm 5) in a loop until we get a block to track. It then computes the time and
location of pickup (algorithms 6 and 7 respectively) and moves the arm to the hover position. Then,
once we hit pickup time (plus or minus some offset that we tuned on hardware), it drops the arm into
the catch position (just a lower z value than the hover position) and closes the gripper to capture
the block. Finally, it returns to the hovering position with the block. As shown in figure 2, this set
of algorithms for detecting and picking up dynamic blocks, in conjunction with the stacking methods
described below in section 1.3, is successfully able to stack dynamic blocks in simulation.

o GETHOVERCATCHPOSITIONS

The hover and catch positions have the same x and y values as the block position we computed
with algorithm 7, and their z values were manually tuned based on hardware testing.

(a) red robot (b) blue robot

Figure 2: Dynamic block stacks

1.3 Stacking

[H] In algorithm 9, lines 3-12 find the placement and hovering robot pose. If no cube is found on the

Algorithm 9 Place Cube On Block
1: Procedure PLACECUBEONBLOCK()

2: cubes < GETCUBESONPLACEMENTBLOCK() Find cubes on placement block
3: if LEN(cubes) = 0 then
Rvertical_gm’pper Pcente’r‘

4: placement_pose < 0 1
else
cube < SORTBYHEIGHT (cubes) Find placement pose for new cube
Peype < cube[l : 3,4]
a <~ GETPLANARANGLE(cube)
O, < GETGRIPPERFINGEROFFSET ()

10: placement_pose <— MAKEPLACEMENTROBOTPOSE(Peype, @, Oy)
11: end if
12: hovering_pose < MAKEHOVERINGROBOTP OSE(placement_pose)

13: MOVETOFRAME(hovering_pose) Execute movement
14: MOVETOFRAME(placement_pose)

15: OPENGRIPPER()

16: MOVETODEFAULTPLACEMENTCONFIGURATION()

17: End Procedure

placement platform, the robot will attempt to place it on the center of the placement panel. If there
are cubes on the placement platform, we find the highest cube’s position and orientation to calculate
the placement robot pose. This is to allow for variability in environment, unanticipated collisions or
any other factors that may change the position of the blocks on the placement platform.

e GETCUBESONPLACEMENTBLOCK
Similar to GETCUBESONSTATICBLOCK, we find the frame for cubes currently on top of the
placement block and filter using a bounding box defined in 2.

e GETGRIPPERFINGEROFFSET
When a cube is grabbed, it may not be in the center of the gripper. Let d, be the deviation from
the center along the direction of the gripper pins. To compensate for the offset we calculate the

Tmin Tmax Ymin Ymax Zmin Amazx
blue 0.437 0.687 -0.294 -0.044 0.2 0.9
red 0437 0.687 0.044 0.294 0.2 0.9

Table 2: Boundry box for cubes on static platform

x-y offset to ensure the stacking is free of error as follows
Oy = [—dgsin(e) —dgcos(a) O]T

e MAKEPLACEMENTROBOTPOSE and MAKEHOVERINGROBOTPOSE
The rotation of the robot placement pose is calculated as follows

Rplace = Rvertical,grippw * RZ,a
Pylace = Peupe +Og + [0 0 0.025]

R lace Place
leace = |: pO pl :|

For the placement pose, 0.025m is added along the +ve z-direction of the top cube. This is to
place the cube on top of the highest cube. For hover position, an additional 0.025m is added.

e MOVETODEFAULTPLACEMENTCONFIGURATION: These are configuration pre-defines by testing
with the hardware robot to ensure that the cubes on the placement platform are observable given
the FOV of the real hardware camera.

—~—

(a) red robot (b) blue robot

Figure 3: Default placement joint configuration

1.4 Overall Approach

Our strategy for the final project was multifaceted, focusing on both static and dynamic block ma-
nipulation. We developed one approach for static blocks and one for dynamic blocks, as detailed in
previous sections. Our overall strategy was to:

e Begin early with static block manipulation, developing robust code for efficient stacking.
e Simultaneously work on dynamic block strategies, recognizing their increased complexity.

e During the testing phase, fine-tune static block stacking while rigorously testing dynamic block
manipulation.

This approach allowed us to build a solid foundation with static blocks while progressively tackling
the more challenging aspects of dynamic block handling.

2 Evaluation

2.1 Simulation

The performance of the blue and red robots was evaluated in simulation. Video demonstrations of the
robots can be accessed at the following links:

e Blue Robot: Video Link
e Red Robot: Video Link

The robots’ performance was evaluated based on accuracy in picking up and stacking blocks, as well
as the time required for each step of the task.

For block-picking accuracy, the robots achieved 100% accuracy when handling static blocks and
82.75% for dynamic blocks. In terms of stacking, the robot demonstrated consistent performance with
static blocks, successfully placing each block on top of the previous one. However, stacking dynamic
blocks was less stable due to inconsistencies in the manner in which these blocks were picked up.

Time measurements were recorded for various steps, including cube detection, inverse kinematics
(IK) calculations, movements to hover and pickup positions, gripper actions, and returning to a default
position. Time statistics were averaged across the first four static blocks and the first four dynamic
blocks.

e Cube Detection: Negligible time, averaging close to 0 seconds for both static and dynamic
blocks.

e IK Calculations: Ranged from 0.2 to 2 seconds, depending on the complexity of the desired
configuration. Static blocks required an average of 0.84 seconds, while dynamic blocks took
longer, averaging 1.34 seconds.

e Movement to Hover Position: Averaged 3.78 seconds for static blocks and 5.61 seconds for
dynamic blocks.

e Movement to Pickup Position: Static blocks averaged 5.23 seconds, while dynamic blocks
required an average of 3.97 seconds.

e Gripper Action: Closing the gripper took an average of 0.25-0.35 seconds for static blocks.
Dynamic blocks showed more variability, averaging 1.49 seconds.

e Return to Default Position: Averaged 2.23 seconds for static blocks and 5.20 seconds for
dynamic blocks.

Trajectory execution took the longest time, ranging from 3 to 6 seconds. Additionally, waiting for a
dynamic block to reach a specific angle before picking it up was a time-consuming step, particularly
when fewer dynamic blocks remained.

Step Static Cube 1 | Static Cube 2 | Static Cube 3 | Static Cube 4 | Static Avg.
Cube Detection 0.001 0.003 0.0 0.0 0.001
IK (Avg.) 0.96 0.88 0.74 0.77 0.84
Moving to Hover 4.45 3.56 3.62 3.48 3.78
Moving to Pickup 5.35 5.14 5.12 5.33 5.23
Closing Gripper 0.28 0.27 0.30 0.27 0.28
Default Position 2.14 2.30 2.18 2.30 2.23

Table 3: Time statistics for static blocks.

https://drive.google.com/file/d/1P36UvWUgy0kJqr9Oaf9jVpEDHb11noBY/view?usp=sharing
https://drive.google.com/file/d/1cNN1_aXyTXcmZdx33KMLCqJhnFrPFJEY/view?usp=sharing

Step Dynamic Cube 1 | Dynamic Cube 2 | Dynamic Cube 3 | Dynamic Cube 4 | Dynamic Avg.
Cube Detection 0.0 0.0 0.0 0.0
IK (Avg.) 1.20 1.28 1.34 1.54
Moving to Hover 5.20 5.30 5.87 6.08
Moving to Pickup 3.53 3.58 4.38 4.38
Closing Gripper 0.32 0.29 0.31 5.03
Default Position 5.03 5.63 5.02 5.12

0.0
1.34
5.61
3.97
1.49
5.20

Table 4: Time statistics for dynamic blocks.

2.2 Hardware

During hardware testing, we had two main objectives.

First and foremost, we had to to fix our gripper commands, which worked as expected in simulation
but were very inconsistent on hardware. Specifically, once closed around a block, the open_gripper ()
command ceased to execute, and our program would simply wait in whatever configuration was last
commanded until the gripper timed out and released. We removed the state checks we had put in
regarding the width of the gripper after the close_gripper () command executed, to verify whether it
had a block in its grasp, but the issue persisted. We finally were able to work around this by manually
opening and closing the gripper with the exec_gripper_cmd.

Secondly, we tuned manual offsets for the z axis positions in the hovering and catching configurations
and the timing of the transition between the two (both described in section 1.2). We also made minute
adjustments in the xy plane for each arm before the competition.

One issue that we discovered when testing on hardware was that the block detection sometimes hap-
pened from the top face of the block and sometimes from one of the side faces. This did create issues
for our catch positions, because our code did not account for this when picking z values, it simply
assumed that the top face of the block was detected (because that is how it consistently ran in simula-
tion) and used the block pose z value accordingly. As a result, in cases when a side face was detected
instead of the top face during hardware tests, the catch position would be assigned too low, and the
gripper would collide with the table as a result. We did not have time to correct this issue before the
final hardware run, but the solution would have been to run a check on the z value in the detected
block pose and adjust the catch position accordingly.

3 Analysis

Overall, there were more challenges in the system when faced with the dynamic blocks. This may be
due to the limited field of view of the end effector camera, time delays caused by the IK calculations,
and just in general challenges that come with adjusting the movement of the robot to a moving block.

This system is quite robust when it comes to picking up the static blocks and stacking them. Even
when the state of the stacking block changed, the robot was able to adapt to the new tower and stack
accordingly. With more time, default position for dynamic block picking could have been optimized
to allow for more success in terms of picking up the dynamic blocks.

The simulation to hardware gap was difficult to bridge. Even though the static block picking
was working in simulation, it was challenging to adapt it to hardware due to April Tag glare, Z-axis
orientation differences, and offsets in the system.

This kind of stacking algorithm can be useful in robotic tasks that involve assembly or just logistics
in general. It relies on repetitive motions through inverse kinematics, which means it would work well
for simple environments where there are not many obstacles in the workspace. This system would have
difficulty adapting to different types of objects or a more cluttered environment.

4 Lessons Learned

4.1 Static Block Handling

e We realized the importance of accounting for potential stack instability. We implemented a
strategy where the Franka Panda assesses the topmost layer of the stack before placing another

10

4.2

4.3

4.4

4.5

block, enhancing overall stability.

Initially, we considered building separate stacks for static and dynamic blocks. However, we
reconsidered this plan after feedback during our presentation, recognizing that it could lead to
more complex path planning and increased risk of collisions.

Hardware Calibration and Adaptation

During our second week of open labs, we learned the critical importance of calibrating for hard-
ware offsets, which differed from simulation.

We observed overshooting issues in hardware stacking, even when the code performed well in
simulation. This taught us the necessity of accounting for Z-axis offsets specifically in hardware.

Dynamic Block Strategies

Timing was a significant challenge in positioning the arm to catch dynamic blocks after sensing
their location and orientation.

We experimented with two approaches:

1. A vertical approach similar to static blocks.

2. A horizontal sweeping strategy.
The sweeping strategy proved unreliable, often displacing blocks. We ultimately chose the vertical
approach for its reliability and robustness, though it required careful timing adjustments.
Performance Optimization
To improve overall task speed, we increased joint velocities after realizing that static block
stacking alone consumed half of the allotted competition time.

Competition Environment Challenges

The final competition environment presented new challenges, including different offsets that we
couldn’t fully account for due to time constraints.

Increased gripper pressure sensor sensitivity in the competition setup required more precise block
centering to avoid self-collision detection, a crucial last-minute learning experience.

These lessons underscore the importance of adaptability, thorough testing in various conditions, and
the need to anticipate and prepare for hardware-specific challenges when transitioning from simulation
to real-world environments.

11

	Methods
	Static Blocks
	Dynamic Blocks
	Stacking
	Overall Approach

	Evaluation
	Simulation
	Hardware

	Analysis
	Lessons Learned
	Static Block Handling
	Hardware Calibration and Adaptation
	Dynamic Block Strategies
	Performance Optimization
	Competition Environment Challenges

